26.10.2020

Ohjelmistorobotiikan checklist – näin tunnistat automatisoitavaksi sopivan prosessin

Ohjelmistorobotiikka
Elina Rajuvaara
Elina Rajuvaara
Intelligent Automation Consultant

Ohjelmistorobotiikalla voidaan helposti lisätä automaatiota tehtäviin, jotka ovat toistuvia ja säännönmukaisia. Mutta miten tällaisen tehtävän tunnistaa? Me teimme asian helpoksi ja keräsimme yhteen ohjelmistorobotiikan tarkistuslistan. Ei muuta kuin arvioimaan robotille sopivia työtehtäviä!

Automatisoitavaksi sopivan prosessin tunnistaminen on todellisuudessa varsin yksinkertaista, kun ymmärtää, millaisia ohjelmistorobotin kyvyt ja rajoitteet ovat. Alla käyn läpi listan asioista, jotka automatisoitavan prosessin tulisi täyttää. Jos suurin osa listan kohdista sopii pohtimaasi tehtävään, on sen robotisointi todennäköisesti mahdollista ja monesti myös järkevää.

Automatisoinnin tarkistuslista:

  • Prosessi on usein toistuvaa työtä
  • Se sisältää suuria käsittelyvolyymejä tai vie paljon aikaa
  • Tehtävä on ihmiselle puuduttava ja tylsä
    • Esimerkiksi tietojen tarkistaminen tai vertailu, tietojen siirtäminen Excelistä järjestelmään tai järjestelmästä toiseen, henkilöstön muistuttelu puuttuvista tuntikirjauksista, laskujen hyväksymisestä tai puuttuvista liitetiedostoista, tai järjestelmässä tapahtuvat manuaaliset tehtävät, kuten ostolaskujen tiliöinti.
  • Prosessi on (mahdollisesti) aikakriittinen
    • Aikapaineen alla käsittelymäärän äkillinen kasvu ei ole robotille ongelma, mutta ihmisellä loppuu helposti aika kesken. Taloushallinnossa tyypillisesti kauden katkot ovat tilanteita, joissa robotti voi olla korvaamaton apuri.
  • Prosessissa on selkeät käsittelysäännöt ja vakiintunut tapa toimia
    • Robotisoitavan tehtävän ei tulisi vaatia tulkintaa tai päättelyä, sillä ohjelmistorobotti seuraa vain sille annettuja sääntöjä pilkuntarkasti.
  • Prosessiin tai kohdejärjestelmään ei ole tiedossa muutoksia lähitulevaisuudessa
    • Pian muuttuvaa prosessia tai poistuvaa järjestelmää ei yleensä kannata lähteä automatisoimaan.
  • Prosessissa on vähän poikkeuksia tai siitä voidaan selkeästi rajata ne tapaukset, joiden käsittely halutaan automatisoida
  • Prosessin automatisoinnista saadaan selkeä hyöty
    • Mikäli kohteen hyötyä ei voida kuvata, ei sitä myöskään luultavasti kannata automatisoida.

Automaatiosta voidaan hyötyä usealla eri tavalla

Kuten yllä olevan listan viimeisessä kohdassa kerroin, tulisi automaatiosta saatava hyöty pystyä kuvaamaan selkeästi jo harkintavaiheessa. Saavutettavia hyötyjä on myös monenlaisia, ja olen alle listannut tyypillisimpiä esimerkkejä, joita asiakkaidemme kanssa olemme tunnistaneet.

  • Laadun paraneminen: Kun tehtävät käsitellään aina samalla tavalla, ei ohjelmistorobotti tee ollenkaan näppäilyvirheitä. Tällaisissa tehtävissä automatisointi parantaa tehtävän tekemisen laatua ja säästää aikaa, kun inhimillisiä virheitä ei tarvitse jälkikäteen etsiä ja korjata.
  • Käsittelynopeuden ja tuottavuuden kasvu: Ohjelmistorobotti on ihmistä nopeampi ja voi työskennellä mihin aikaan tahansa, jopa kellon ympäri. Automatisointi parantaa tehtävän vasteaikaa ja asiakaskokemusta. Se myös vapauttaa työntekijät aikaa vievistä rutiineista enemmän lisäarvoa tuottaviin tehtäviin.
  • Ketteryys ja skaalautuvuus: Uusi robotti saadaan käyttöön nopeammin kuin uusi ihminen ehditään palkata ja kouluttaa tehtäviinsä. Näin automaatio tarjoaa esimerkiksi enemmän kapasiteettia kausivaihteluihin vastaamiseen.
  • Riskienhallinta: Erilaisten inhimillistä riskiä sisältävien tehtävien siirto ohjelmistorobotille voi toimia keinona hallita näitä riskejä. Tällaisia ovat esimerkiksi tehtävät, joissa käsitellään salassa pidettävää tietoja, kuten palkka- tai potilastietoja. Ohjelmistorobotilla ei ole intressiä dataan, eikä se missään tilanteessa aja omaa etuaan tai syyllisty vilpilliseen käytökseen, vaan toimii puolueettomasti sille annettujen sääntöjen ja ohjeiden mukaan.

Myös käsiteltävän datan tulee olla kunnossa

Automaation käyttöönotto on sitä helpompaa, mitä paremmassa kunnossa automatisoitaviin tehtäviin liittyvä data on. Ja automaatiokohteiden harkinta voi myös auttaa tunnistamaan paikkoja, joissa käytettävän tiedon laatua tulisi parantaa, sillä laadukkaasta datasta on hyötyä ilman automaation lisäämistäkin. Pidä siis nämä asiat mielessä datasi suhteen:

  • Data on digitaalisessa ja rakenteisessa muodossa: Excel-taulukot ja järjestelmissä sijaitsevat tietokentät ovat ohjelmistorobotille mieluisaa luettavaa. Sen sijaan vapaa teksti, kuvat ja PDF-tiedostot ovat hankalampia käsiteltäviä, joskaan eivät mahdottomia.
    • Hyvät tietolähteet lyhyesti:
      • Tiedostomuodot (Excel, JSON, CSV, XML, HTML)
      • Tietokannat
    • Heikot tietolähteet:
      • Skannatut dokumentit
      • PDF-tiedostot (jos muoto ei ole lomake tai tiedot eivät aina sijaitse selkeästi määritettävässä paikassa)
      • Vapaa teksti, esim. sähköpostin viestikentässä
      • Kuvatiedostot
  • Datassa ei ole puutteita ja se on ajan tasalla: Me ihmiset usein huomaamattamme täydennämme datan puutteita omalla tietämyksellämme. Ohjelmistorobotilta tällainen kyky kuitenkin puuttuu, joten käsiteltävän tiedon tulee olla niin niiltä osin moitteetonta kuin tehtävä sitä vaatii.
  • Kaikki käsittelyyn tarvittava data on ohjelmistorobotin saatavilla: Aivan kuin edellisessä kohdassa, me ihmiset osaamme myös etsiä tehtävämme tarvitsemaa dataa puutteellistenkin tietojen perusteella. Robotin toimintaa voimme katsoa esimerkin kautta: Jos toimittajan perustamispyynnön yhteydessä tulee tarkistaa, onko toimittaja ennakkoperintärekisterissä, tulisi pyynnössä olla mukana toimittajan y-tunnus. Jos tunnusta ei ole, ei robotti voi asiaa käydä tarkistamassa. Prosessiin olisi hyvä tehdä muutos, että toimittajan y-tunnus olisi perustamispyynnössä pakollinen tieto.

”Helppoja voittoja” löydät usein talous- ja henkilöstöhallinnosta

Talous- ja henkilöstöhallinto ovat hyviä soveltamisalueita automaatiolle, koska data on pääasiassa digitaalista ja määrämuotoista. Tehtävät prosessit ovat vakiintuneita tai lakisääteisiä, jolloin käsittelysääntöjen määrittäminen on helppoa.

Kun automaatiokohteet on tunnistettu, lista kannattaa arvioida ja priorisoida kahdella näkökulmalla:

  • Automaation helppouden mukaan
  • Saavutettavien hyötyjen mukaan

Optimaalisin paikka automaatiolle löytyy luonnollisesti tehtävistä, joissa saavutettavat hyödyt ovat suuria ja joiden automatisointi on helppoa. Monesti on parempi aloittaa automatisoimalla ensin osa prosessista tai käyttää vain osaa datasta. Näin pystytään paremmin arvioimaan projektin kustannukset ja kesto. Automaatioastetta voidaan sen jälkeen nostaa lisäämällä käsittelysääntöjä ja käsiteltävää dataa.

Näiden vinkkien avulla ohjelmistorobotille tai muulle automaatiovälineelle sopivien tehtävien tunnistaminen on toivottavasti jo huomattavasti helpompaa. Ja tarkistuslista on aina apunasi, jos automaation edellytykset eivät vielä löydy lihasmuistista.


Efistream-webinaari: Tunnista automaatiokohteet ja myy ne sisäisesti – tällaista osaamista tarvitset

Torstaina 29.10. klo 9:00 Efistream-webinaarissamme tunnistetaan ohjelmistorobotille sopivia työtehtäviä. Efiman Elina Rajuvaara ja Milla Blomqvist käyvät läpi, millaiset tehtävät sopivat automatisoitaviksi, miten tällaisia tehtäviä tunnistetaan sekä millaista sisäistä osaamista ohjelmistorobotin hankkiminen edellyttää.

Ilmoittaudu mukaan täältä!

Kirjoittaja

Elina Rajuvaara

Elina Rajuvaara
Intelligent Automation Consultant

Elina työskentelee Efimalla automaatiokonsulttina. Hän tehtäviään ovat Efiman asiakasyritysten talous- ja henkilöstöhallinnon prosessien automatisoinnin edistäminen sekä ohjelmistorobotiikan koulutukset. Elinasta paras hetki on, kun asiakkaan kanssa yhteistyössä tunnistettu ja määritelty toistuva rutiinitehtävä siirtyy Aili-ohjelmistorobotin tehtäväksi.